

MODEVAIIA 3 Le Markstein 28-30 Juin 2011 Fantini-Hauwel, carole Université de Provence Laboratoire Psyclé

Alexithymie:

incapacité à identifier ses émotions, Incapacité à les décrire à autrui Pauvreté imaginative, faiblesse des capacités de mentalisation....

Modalité de fonctionnement émotionnel associé à de nombreux troubles psychopathologiques ou somatiques : - anxiété, dépression, addictions, troubles dits « psychosomatiques »

Construit qui partage une certaine communauté avec la notion d'intelligence émotionnelle

Débat qui agite encore les chercheurs: statut de l'alexithymie

S'agit il de quelque chose qui a à voir avec un trait stable? (Luminet & al, 2001, 2007, Taylor, 1997)

- Déficit du traitement de l'information émotionnelle (traitement affects négatifs, positifs, difficultés d'accès à la mémoire autonoétique...)

S'agit il d'un mode de réponse à un événement négatif et donc de quelque chose de plus situationnel? (Honkalempi, 2001)

- Stratégie défensive, variable réactionnelle

Evaluation de la stabilité des traits de personnalité

Stantor ,DA, Bagby, RM, Joffe, RT (1997)

- Nécessité d'évaluer la stabilité relative des scores de personnalité dans un contexte de changement aiguë
- De nombreuses études n'ont tenu compte que de la stabilité absolue
- Dans quel mesure les variations des scores d'une variable X contribuent elles aux variations des scores d'une variable Y

Méthodologie

Etude portant sur les conséquences des tests génétiques de prédispositions aux cancers digestifs.

Protocole longitudinal à 4 temps de mesures
Préalablement à la consultation de génétique T1
15 jours après la consultation d'information T2
15-30 jours après l'annonce du résultat T3
6 mois après l'annonce du résultat T4

Population: 45 personnes (16 hommes, 29 femmes)

Age moyen: 44,97 ± 13,74

Instruments: State Trait Anxiety Inventory (Spielberger, 1985)

Toronto Alexithymia Scale (bagby, 1994, Zech, 1999)

3 dimensions: DIF, DDF, EOT

Difficultés à identifier ses émotions (DIF)

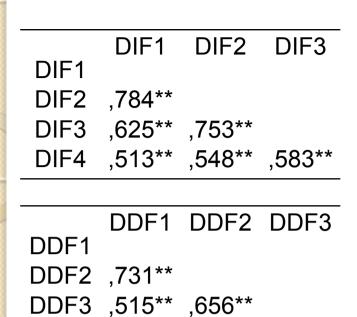
Je ne vois pas très clair dans mes sentiments Quand je suis bouleversé(e), je ne sais pas si je suis triste, effrayé(e) ou en colère

Difficultés à décrire ses émotions (DDF)

J'arrive facilement à décrire mes émotions Il m'est difficile de révéler mes sentiments intimes même à des amis très proches

Pensée orientée vers l'extérieur (EOT)

Etre Conscient de ses émotions est essentiel Je préfère parler aux gens de leurs activités quotidiennes plutôt que de leurs sentiments


1 : Désaccord complet, 2 : Désaccord relatif, 3 : Ni accord ni désaccord, 4 : Accord relatif, 5 : Accord complet

TAS 20 : α de .77 à .86 (20 items)

DIF: α de .78 à .81 (7 items)

DDF: α de .72 à .81 (5 items)

EOT: α de .41 à .51 (8 items)

Stabilité relative : stabilité des différences relatives entre individus dans le temps : stabilité de rang, de position de l'individu autour de la moyenne (corrélations)

	EOT1	EOT2	EOT3
EOT1			
EOT2	,721**		
EOT3	,592**	,593**	
EOT4	,500**	,494**	,661**

DDF4 ,574** ,622** ,550**

	Anx 1	Anx 2	Anx 3
Anx 1			
Anx 2	.719**		
Anx 3	.522**	.587**	
Anx 4	.430**	.466**	.776**

≠ Anxiété T1 et T2	R²Adj : .14 / R² : .19	Beta	Coefficient	Std. Error	t value	Pr(> t)
(Intercept)			-2,59425	1,516343	-1,71086	0,094664
DIF1.2	T(2.45) = 2.24 p = .02	0,401627918	0,956871	0,356741	2,682253	0,010492
DDF1.2	F(2,45) = 3.31, p = .03	0,107565764	0,314632	0,430249	0,73128	0,468767
EOT1.2		-0,024506804	-0,08256	0,483078	-0,17091	0,865135

≠ Anxiété T2 et T3	R ² Adj:.05 / R ² :.12	Beta	Coefficient	Std. Error	t value	Pr(> t)
(Intercept)			1,149502	2,001502	0,57432	0,568889
DIF2.3	F(0.45) 4.00	0,270787785	0,764473	0,491905	1,554109	0,127845
DDF2.3	F(2,45) = 1.86, ns	0,057081165	0,189098	0,582228	0,324783	0,746997
EOT2.3		0,127541072	0,431951	0,504014	0,857022	0,396414

0,00,00,00,00	≠ Anxiété T3 et T4	R²Adj : .05 / R² : .11	Beta	Coefficient	Std. Error	t value	Pr(> t)
0.00.00.00.00	(Intercept)			-2,95072	1,597319	-1,84729	0,071929
0000000000	DIF3.4	F(2.45) = 1.74 ps	-0,154289995	-0,2836	0,382755	-0,74095	0,462944
0000000000	DDF3.4	F(2,45) = 1.74, ns	0,40718918	0,937818	0,439849	2,132138	0,039034
00000000000	EOT3.4		0,026540466	0,075903	0,483573	0,156964	0,876044

Implication du changement des scores de DIF entre T1 et T2 pour expliquer les variations de l'anxiété.

Contribution des variations entre DDF3 et 4 pour expliquer les variations d'anxiété entre T3 et T4.

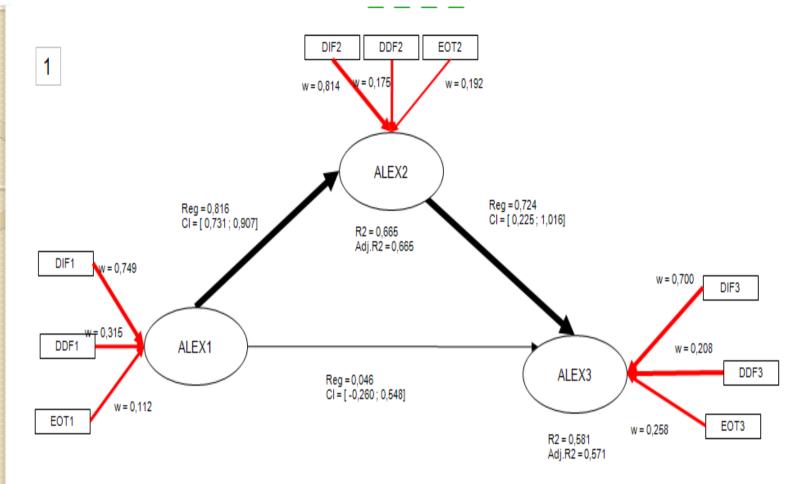

Anova sur données vectorisées

Tableau A	Anova
-----------	-------

	Variable dépendante:	Re	ponse					
1000				Mean.	F.			Part
00000		Df	Sum.Sq	Sq	value	PrF.	Eta2	Var
	Sujet	61	1279.71	20.98	15.51	0.00	0.15	42.51
8	Temps	3	1.18	0.39	0.29	0.83	0.00	0.04
	Dimension	2	138.88	69.44	51.34	0.00	0.02	4.61
	Sujet*Temps	166	451.13	2.72	2.01	0.00	0.05	14.98
0000000	Sujet*Dimension	122	736.59	6.04	4.46	0.00	0.09	24.47
	Temps*dimension	6	14.72	2.45	1.81	0.09	0.00	0.49
	Sujet*temps*dimension	332	388.51	1.17	0.87	0.96	0.05	12.90
	Residuals	3927	5311.65	1.35				
000000000			8322.37				0.36	100.00

Laisse penser que s'il y a une grande part de stabilité (44% de l'variance), il y a aussi une part de variabilité qui n'est pas de l'erreur ou du bruit

Qu'est ce qui varie, comment identifier les items qui renverraient à quelque chose de réactionnel??

2	GoF	oF (Bootstra
Absolu	0,609	0,590
Relatif	0,949	0,860
Modèle extern	0,962	0,889
Modèle intern	0,986	0,966

R ² (ALEX2 / 1):		
R ²	F	Pr > F	R2(Bootstrap)
0,665	85,448	0,000	0,701

Path coefficie	nts (ALEX2 / 1	l) :							
√ariable latent	Valeur	Ecart-type	t	Pr > t	f²	aleur(Bootstra	rt-type(Bootst	ne inférieure (9	e supérieure (

R ² (ALEX3 / 1):		
R²	F	Pr > F	R²(Bootstrap)
0,581	29,097	0,000	0,653

Path coefficie	nts (ALEX3 / 1	1):							
√ariable latent	Valeur	Ecart-type	t	Pr > t	f²	aleur(Bootstra	rt-type(Bootst	ne inférieure (9	e supérieure (
ALEX1	0,046	0,173	0,265	0,792	0,002	0,140	0,202	-0,260	0,548
ALEX2	0,724	0,173	4,195	0,000	0,419	0,654	0,235	0,225	1,016

Effets directs (Variable latente) / Dimension (1) :							
	ALEX1	ALEX2	ALEX3				
ALEX1							
ALEX2	0,816						
ALEX3	0,046	0,724					

ALEX1

ALEX2

ALEX3

ALEX3

	Effets indirect	s (Bootstrap)	/ Dimension (1) :			
X			•				
	de	à	Effets	ffets(Bootstra	rt-type(Bootst	ne inférieure (9	e supérieure (
3	ALEX1	ALEX3	0,591	0,544	0,208	0,097	0,886
	Effets totaux	(Bootstrap) / [Dimension (1)	:			
	de	à	Effets	ffets(Bootstra	rt-type(Bootst	ne inférieure (9	e supérieure (
	ALEX1	ALEX2	0,816	0,820	0,172	0,741	0,923

0,675

0,642

0,230

0,259

0,455

0,096

0,833

1,014

Validité discriminante	(Corrélations carrées	< AVE) (Dimension 1) :	

0,637

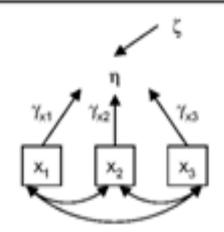
0,724

6		ALEX1	ALEX2	ALEX3	Communalit
	ALEX1	1	0,665	0,405	0,561
	ALEX2	0,665	1	0,580	0,568
	ALEX3	0,405	0,580	1	0,659
	Moyenne Cor	0,561	0,568	0,659	0

Principes généraux des PLS-PM

- Estimation qui maximize la variance de la variable dépendante expliquée par les variables indépendantes, alors que dans les SEM, l'estimation tente de reproduire la matrice de covariance.
- Processus itératif qui fonctionne en alternant estimation interne et externe des VL.
- Dans l'étape d'estimation du modèle externe, chaque VL est obtenue par une combinaison linéaire pondérée de ses propres VM
- Dans l'étape d'estimation du modèle interne, chaque VL est obtenue par une combinaison linéaire pondérée des VL « connectées ».
- Les poids internes sont calculées selon le type de schéma choisi (centroid, factoriel...peu d'influence sur les résultats cependant).
- Les poids externes sont calculées en regard du sens des relations entre VM et VL (privilégier PLS estimation en mode formatif si multicolinéarité).

Dans quelles circonstances faut-il préférer les PLS-PM aux SEM type Lisrel ?

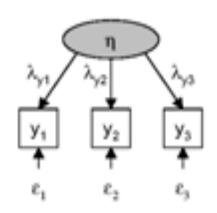

- Pas de postulat initiaux au sujet de la population ou de l'échelle de mesure (données ordinales, nominales d'intervalles, échelle...)
- Pas de postulat initial quant à la distribution des données.

Mais quelques contraintes quand même!

- 2 indicateurs par VL minimum
- 5 sujets par indicateurs : Si 4 variables latentes, on considère celle qui a le plus d'indicateurs manifestes, et on estime qu'il faudra 5 sujets*nbre d'indicateurs pour réaliser l'analyse.
- Si effectif faible, l'analyse est faisable mais risque de sous estimation

- Cause ou construit la Variable latente. Le construit est considéré comme une combinaison explicative d'indicateurs.
- Les VM ont une influence sur las VL
- on rassemble des VM pour créer une VL. On construit donc la VL à partir des VM VL = lambda1*VM1 + lambda2*VM2 + ... + erreur.
- modèle de régression multiple) et dans ce cas on pourra très bien avoir des coefficients > 1

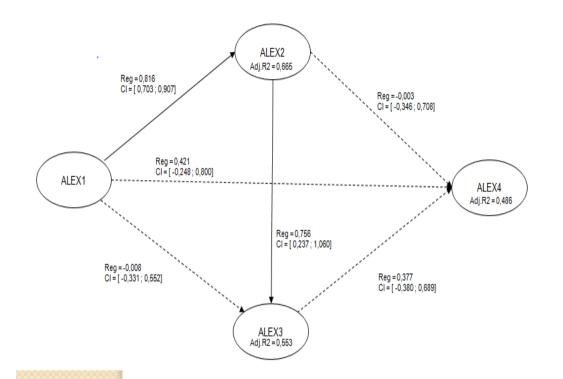
Formative indicators



- Cause the latent variable
- Can have positive, negative or no correlation
- Example: Life stress
 - Job loss
 - Divorce
 - Recent accident

Sens des relations entre VM et VL: Mode Formatif

- Concept latent non observable, qui existe au travers de variables observables. Les indicateurs observables dépendent du construit latent.
- Les VL influences les VM.
- Unidimensionnalité est essentielle dans ce mode.
- VM = loading * VL + erreur.
- dans le cas standardisé on aura des poids <1 (c'est un modèle de régression simple).


Reflective indicators

- · Depend on the latent variable
- Should be highly positively correlated
- Example: Timeliness
 - Accommodation of last minute requests
 - Punctuality in meeting deadlines
 - Speed of returning phone calls

Sens des relations entre VM et VL: Mode Reflectif

- 1 : fiabilité des blocs (Rho DG plutôt que Cronbach)
- 2 Qualité d'ajustement (relatif, interne et externe).
 - .90 et au dela si conservateur. Sinon .80 et au dela.
- 3: cross loading : un facteur doit avoir le poids le plus important sur la VL a laquelle il est relié.
- 4: tableau de corrélation : quelle influence des VM en particulier?
- Vérifier les loadings, la communalité
- 5: modèle structural à analyser.

		GoF
	GoF	(Bootstrap)
Absolu	0,599	0,569
Relatif	0,931	0,814
Modèle externe	0,971	0,870
Modèle interne	0,960	0,934

Effets totaux	ALEX1	ALEX2	ALEX3
ALEX1			
ALEX2	0,816		
ALEX3	0,609	0,756	
ALEX4	0,649	0,282	0,377

Effets indirects	ALEX1	ALEX2	ALEX3
ALEX1			
ALEX2	0,000		
ALEX3	0,617	0,000	
ALEX4	0,227	0,285	0,000

ALEX 2 Variable latente	Valeur	Ecart-type	t	Pr > t	f²	Valeur (Bootstrap)	Ecart-type (Bootstrap)	Borne inférieure (95%)	Borne supérieure (95%)
ALEX1	0,816	0,088	9,243	0,000	1,987	0,810	0,164	0,701	0,913
ALEX 3								Borne	Borne

ALEX 3								Borne	Borne
Variable						Valeur	Ecart-type	inférieure	supérieure
latente	Valeur	Ecart-type	t	Pr > t	f²	(Bootstrap)	(Bootstrap)	(95%)	(95%)
ALEX1	-0,008	0,176	-0,043	0,966	0,000	0,130	0,216	-0,385	0,509
ALEX2	0,756	0,176	4,289	0,000	0,438	0,640	0,235	0,180	1,043

ALEX4								Borne	Borne
Variable						Valeur	Ecart-type	inférieure	supérieure
latente	Valeur	Ecart-type	t	Pr > t	f²	(Bootstrap)	(Bootstrap)	(95%)	(95%)
ALEX1	0,421	0,189	2,229	0,031	0,121	0,317	0,223	-0,116	0,761
ALEX2	-0,003	0,227	-0,014	0,989	0,000	0,120	0,253	-0,398	0,575
ALEX3	0,377	0,165	2,283	0,028	0,127	0,368	0,240	-0,550	0,690