

mlVAR ou GIMME : les jeux sont faits, rien ne va plus !

SECONDE PARTIE

Jean-Luc Kop Université de Lorraine, 2LPN-CEMA

http://2lpn.univ-lorraine.fr/

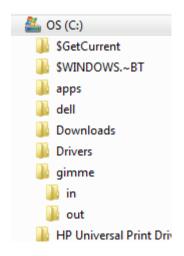
https://frama.link/LDFf_gAW

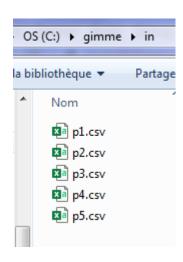
7^e ATELIER MODEVAIIA, Sommières (Gard), 27-29 mai 2019

Mise en œuvre avec le package « gimme »

http://gimme.web.unc.edu/

http://gateslab.web.unc.edu/programs/gimme/

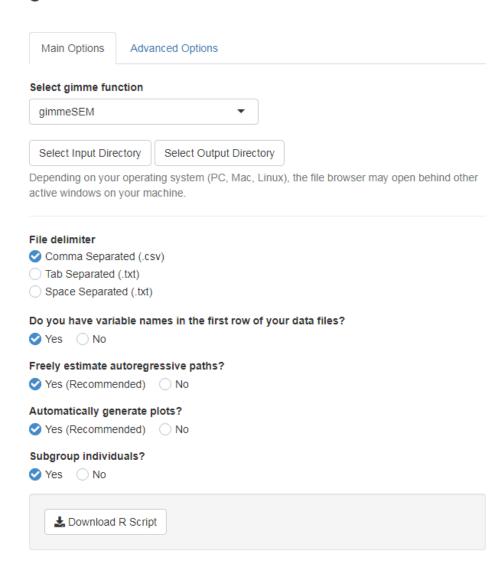

https://github.com/GatesLab/gimme/


Mise en oeuvre

- Première version de l'algorithme avec Matlab et Lisrel
- 2014 : package R (gimme) [qui utilise lavaan pour l'estimation des paramètres des modèles structuraux et qgraph pour les graphiques]
- Interface graphique (package gimmeTools) pour générer automatiquement le script

Préparatifs

- Créer un répertoire dédié
- Créer un sous-répertoire avec uniquement les fichiers de données
- Un fichier de données par individu ; variables en colonnes ; moments en lignes ;
 séparateur de champs = virgule ou tab ou espace
- Créer un sous-répertoire vide qui va contenir les résultats


4	А	В	С	D
1	V1	V2	V3	
2	-0,695598	-0,381068	4,528117	
3	-0,815085	-2,730419	3,160198	
4	0,253186	-2,268427	1,926741	
5	0,813265	-0,866214	2,06398	
6	0,292352	0,430201	3,061942	
7	0,250911	0,813786	3,903032	
8	1,094363	-0,380292	4,145783	
9	0,209091	1,247851	6,489414	

Préparatifs

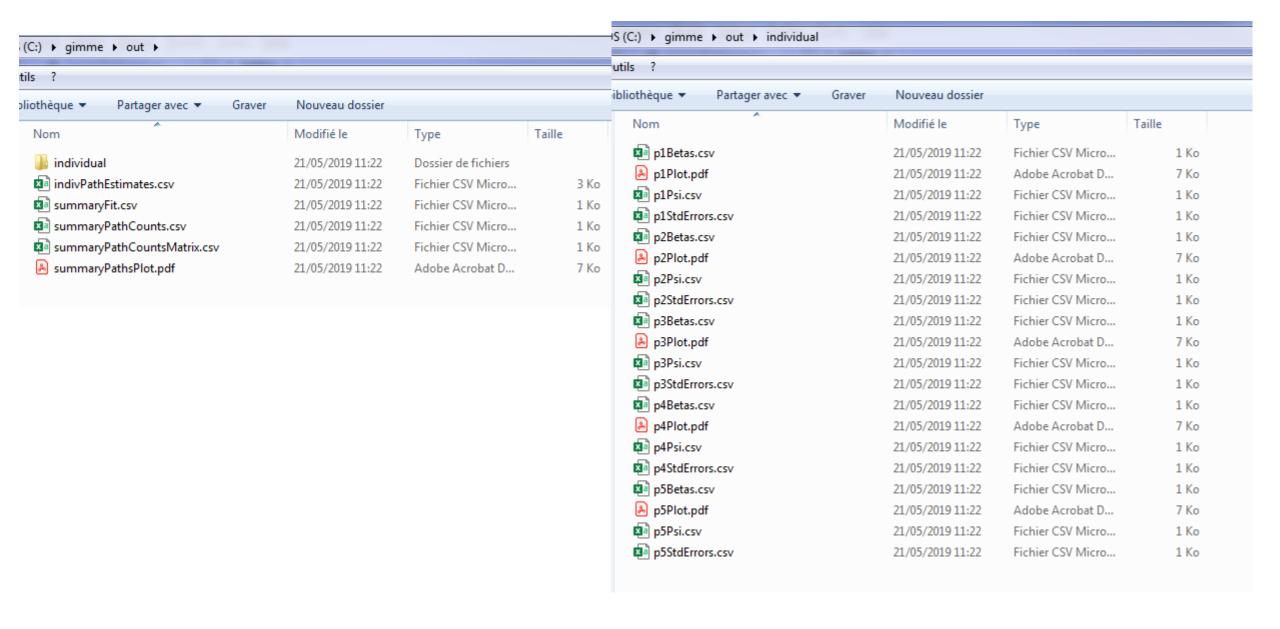
- Installer le package « gimme »
- Installer le package « gimmeTools »
- Charger les deux packages
 - library(gimme)
 - library (gimmeTools)
- Lancer l'interface graphique
 - gimmeGUI()

L'interface graphique

gimmeGUI

Getting Started Guide

```
# The R code below can be copied and pasted directly into R to run gimme.


fit <- gimmeSEM(
    data = "",
    out = "",
    sep = ",",
    header = TRUE,
    ar = TRUE,
    plot = TRUE,
    subgroup = TRUE
)
```

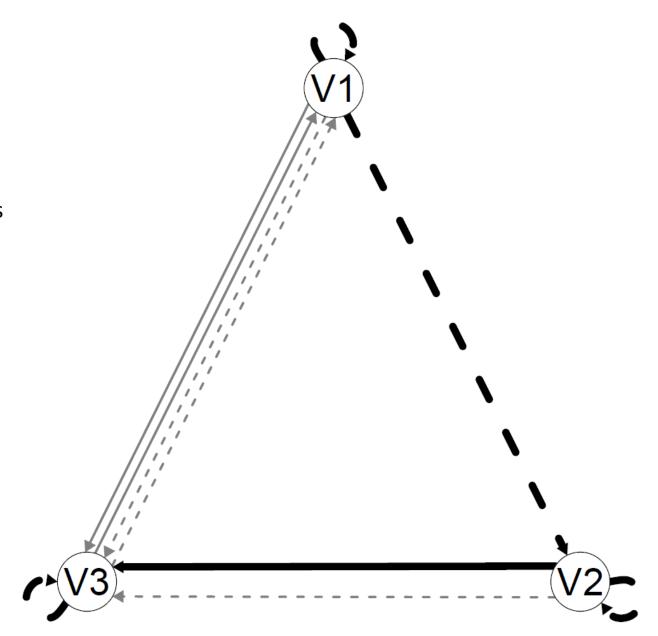
Include Advanced Options in Syntax

Click to close GUI when done

Le script généré

Les fichiers résultats

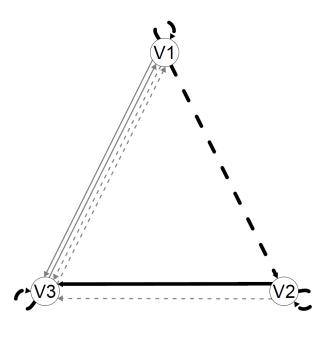
Le résumé des résultats


Fichier « summaryPathsPlot.pdf »

Traits noirs : modèle général

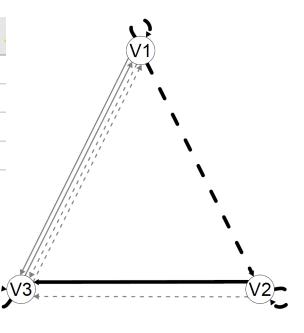
Traits gris : modèles individuels

Traits pleins: effets contemporains


Traits tiretés : effets décalés

Le nombre de pistes présentes dans les modèles

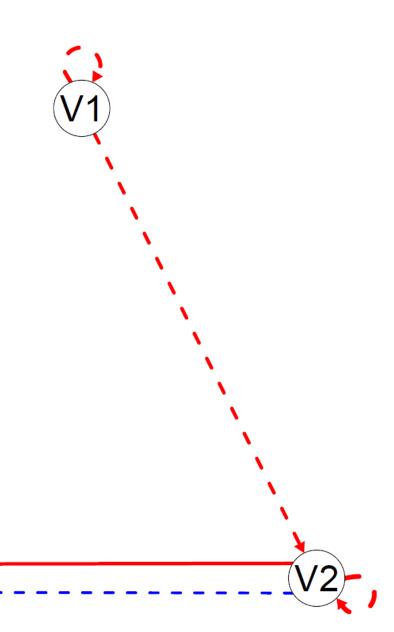
Fichier « summaryPathCounts.csv »


1	Α	В	С	D	
1	dv	iv	count.group	count.ind	
2	V1	V1lag	5	0	
3	V2	V1lag	5	0	
4	V3	V2	5	0	
5	V2	V2lag	5	0	
6	V3	V3lag	5	0	
7	V3	V1	0	1	
8	V3	V1lag	0	1	
9	V3	V2lag	0	1	
10	V1	V3	0	1	
11	V1	V3lag	0	1	
12					

Idem sous forme matricielle

Fichier « summaryPathCountsMatrix.csv »

4	Α	В	С	D	E	F	
1	V1lag	V2lag	V3lag	V1	V2	V3	
2	5	0	1	0	0	1	
3	5	5	0	0	0	0	
4	1	1	5	1	5	0	
5							

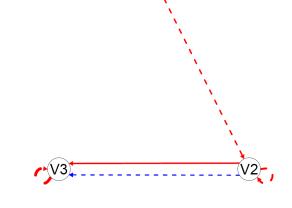

Les modèles individuels

Fichier « p1Plot.pdf »

Traits pleins: effets contemporains

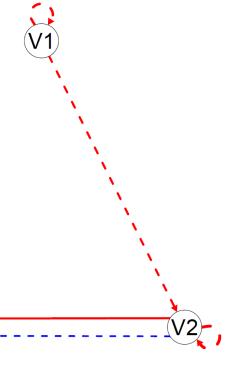
Traits tiretés : effets décalés

Traits rouges : coefficients positifs Traits bleus : coefficients négatifs

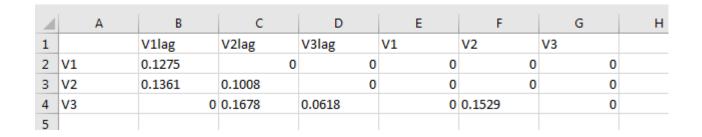

Les coefficients des modèles individuels (pour tous les sujets)

Fichier « indivPathEstimates.csv »

4	Α	В	С	D	E	F	G	Н
1	file	dv	iv	beta	se	z	pval	level
2	p1	V1	V1lag	0.448648683190858	0.114102053082248	3.93199483332223	8.42438767743037e-05	group
3	p1	V2	V2lag	0.550832167344783	0.0893659503602748	6.16378122902657	7.10280501081684e-10	group
4	p1	V3	V3lag	0.876494550353216	0.0497721555019683	17.6101384702648	0	group
5	p1	V2	V1lag	0.368948555281036	0.0979473793095448	3.76680374586686	0.000165350879393511	group
6	p1	V3	V2	0.36969520663804	0.0720102980994348	5.13392134729882	2.8376672167596e-07	group
7	p1	V3	V2lag	#CHAMP!	0.0759559812902221	#CHAMP!	0.000364999784989717	ind
8	p2	V1	V1lag	0.457150767141839	0.10186914822463	4.48762726604708	7.20207899540526e-06	group
9	p2	V2	V2lag	0.525150044150036	0.0868087719944861	6.04950435404606	1.45292133879593e-09	group
10	p2	V3	V3lag	0.66225923029304	0.069276393426023	9.55966668501926	0	group
11	ກາ	1/2	V/1lag	n //700070076622002	n noasnsk3103314as	5 206/2517502707	1 2/72200616117/15 07	group


Sous Excel, les coefficients négatifs ne sont pas reconnus correctement avec la fonctionnalité « convertir » du menu « données ». La reconnaissance est correcte en utilisant la fonctionnalité « récupérer et transformer des données à partir d'un fichier texte/CSV » du menu « données »

Les coefficients des modèles individuels (sujet par sujet)


Fichier « p1Betas.csv »

4	Α	В С		D	E	F	G	
1	Column1 🔻	V1lag 🔻	V2lag 🔻	V3lag 🔻	V1 🔻	V2 🔻	V3 ▼	
2	V1	0.4486	0	0	0	0	0	
3	V2	0.3689	0.5508	0	0	0	0	
4	V3	0	-0.2707	0.8765	0	0.3697	0	
5								

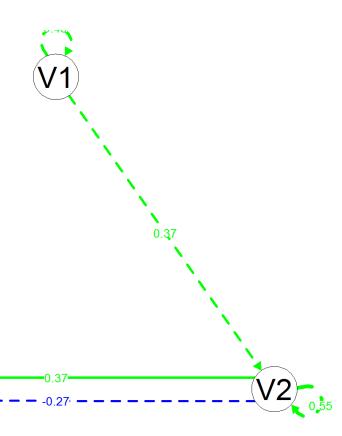
Les coefficients des modèles individuels (sujet par sujet)

Fichier « p1StdErrors.csv »

ATTENTION : ces erreurs-standards ne sont pas les mêmes que celles qui figurent dans le fichier global (indivPathEstimates.csv) !!!!

4	Α	В	С	D	E	F	G	Н
1	file	dv	iv	beta	se	z	pval	level
2	p1	V1	V1lag	0.448648683190858	0.114102053082248	3.93199483332223	8.42438767743037e-05	group
3	p1	V2	V2lag	0.550832167344783	0.0893659503602748	6.16378122902657	7.10280501081684e-10	group
4	p1	V3	V3lag	0.876494550353216	0.0497721555019683	17.6101384702648	0	group
5	p1	V2	V1lag	0.368948555281036	0.0979473793095448	3.76680374586686	0.000165350879393511	group
6	p1	V3	V2	0.36969520663804	0.0720102980994348	5.13392134729882	2.8376672167596e-07	group
7	p1	V3	V2lag	#CHAMP!	0.0759559812902221	#CHAMP!	0.000364999784989717	ind
8	p2	V1	V1lag	0.457150767141839	0.10186914822463	4.48762726604708	7.20207899540526e-06	group
9	p2	V2	V2lag	0.525150044150036	0.0868087719944861	6.04950435404606	1.45292133879593e-09	group
10	p2	V3	V3lag	0.66225923029304	0.069276393426023	9.55966668501926	0	group
11	ກາ	1/2	V/1log	מסרכאאדחסדמחרדא ח	U U003U3E310331403	5 206/2517502707	1 2/72200616117//- 07	group

L'adéquation des modèles individuels


Fichier « summaryFit.csv »

_	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N
1	file	chisq	df	npar	pvalue	rmsea	srmr	nnfi	cfi	bic	aic	logl	status	
2	p1	5.9521	6	21	0.4286	0	0.0493	1.0007	1	1095.7189	1055.9906	#CHAMP!	converged no	ormally
3	p2	1.2039	6	21	0.9767	0	0.0136	1.0784	1	996.7993	957.0711	#CHAMP!	converged no	ormally
4	р3	1.2499	5	22	0.94	0	0.0158	1.0755	1	990.8292	949.2092	#CHAMP!	converged no	ormally
5	p4	10.038	7	20	0.1864	0.0941	0.0349	0.9607	0.9817	981.666	943.8296	#CHAMP!	converged normally	
6	p5	7.1295	6	21	0.309	0.062	0.0436	0.9824	0.993	991.4476	951.7194	#CHAMP!	converged normally	
7														

Les résultats de la fonction gimmeSEM stockés dans un objet R

- Les fonctions du package gimme peuvent exporter les résultats dans des fichiers externes et/ou stocker les résultats dans un objet R
- Ce stockage interne offre beaucoup plus de souplesse dans la gestion des résultats
- Par exemple, on peut reprendre les graphiques et changer les options

library (qgraph)
qgraph (fit\$plots\$p1, DoNotPlot = F, posCol = "green", edge.labels = T)

graphicalVAR et mlVAR vs. gimme

Trois packages pour modéliser des séries temporelles sous formes de réseaux

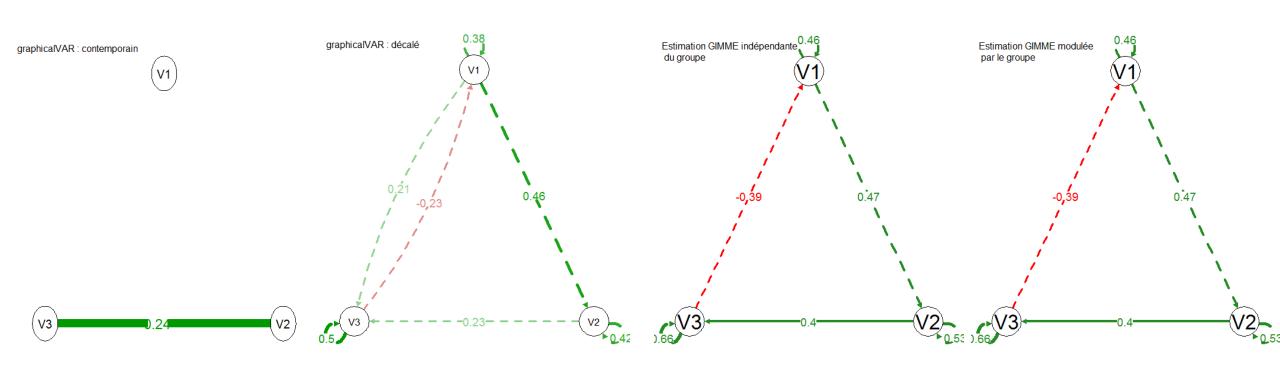
graphicalVAR:

 Modélisation du réseau des relations contemporaines et décalées de séries temporelles pour un individu unique

mIVAR:

• Construction d'un réseau moyen obtenu par l'application d'un modèle mixte aux coefficients des réseaux individuels

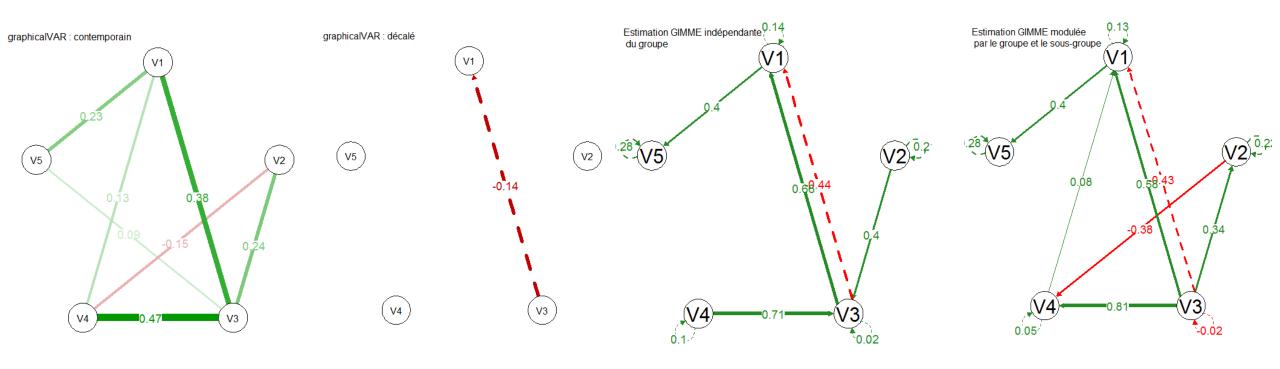
gimme:


- Modélisation des réseaux individuels
- Construction d'un modèle général (commun)
- Recherche de sous-groupes homogènes

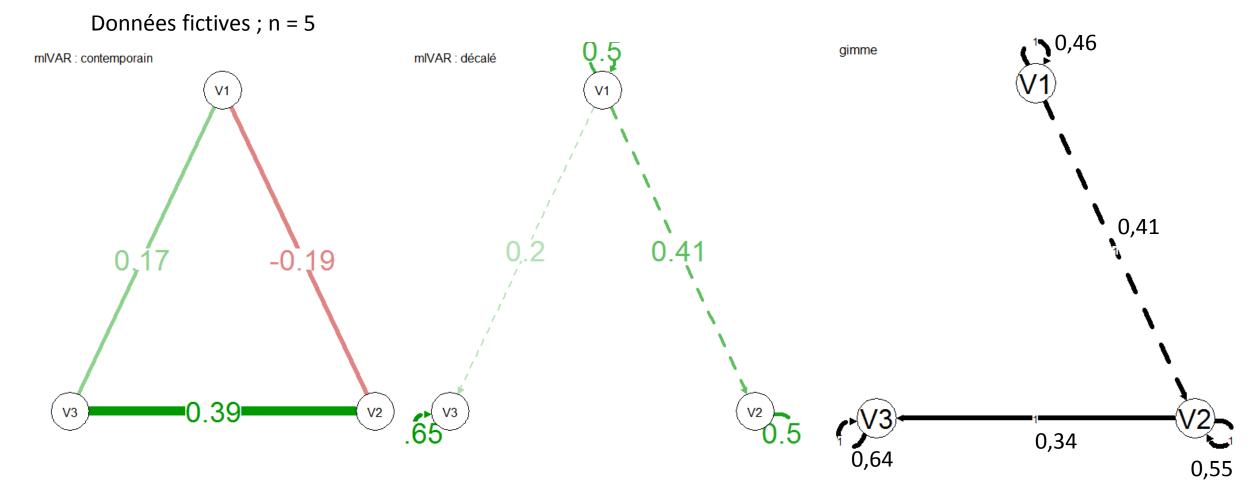
Des différences sensibles entre les approches

- mlVAR élabore un modèle moyen ; gimme élabore un modèle commun
- Le modèle général existe nécessairement dans mlVAR; pas forcément avec gimme
- La distribution inter-sujets des valeurs d'un coefficient est supposée normale dans mIVAR;
 elle est bimodale pour les coefficients non retenus dans le modèle commun avec gimme
- gimme estime de manière simultanée les coefficients contemporains et décalés ; mlVAR / graphicalVAR estiment d'abord les relations décalées pour ensuite estimer les relations contemporaines sur la base des résidus (dépendance de l'ordre des variables ?)
- Les relations contemporaines sont dirigées dans gimme et non dirigées dans mIVAR / graphicalVAR

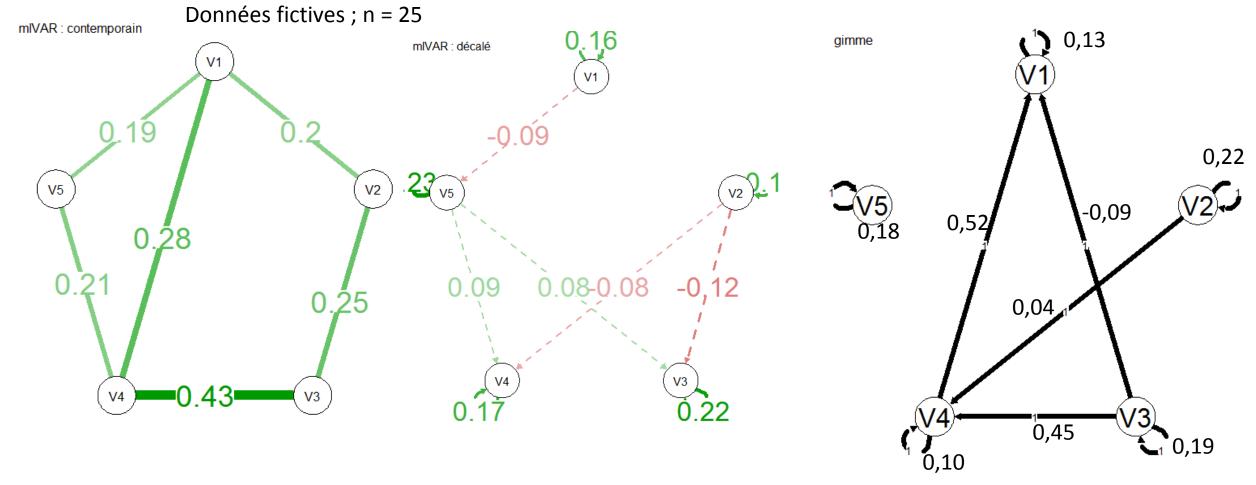
Comparaisons empiriques : modèles individuels (1er exemple)


Données fictives ; n = 5

- pas de différence entre les deux réseaux gimme
- les trois auto-régressions sont présentes dans les deux estimations, avec des intensités relativement semblables
- les liens décalés entre V1 et V2 et entre V3 et V1 sont présents avec le même signe dans les deux estimations
- graphicalVAR estime à la fois une relation contemporaine entre V2 et V3 (0.24) ainsi qu'un effet décalé de V2 sur V3 (0.23);
 gimme n'estime qu'un lien contemporain de V2 sur V3 (0.40)
- graphicalVAR relève un lien décalé de V1 sur V2 (0.21) qui n'est pas présent dans le réseau gimme


Comparaisons empiriques : modèles individuels (2^e exemple)

Données fictives ; n = 25



- Petites différences entre les deux réseaux gimme
- aucune auto-régression n'est présente dans l'estimation graphicalVAR
- une seule autre piste décalée est présente dans les deux estimations : entre V3 et V1
- les liens contemporains (dirigés avec gimme, non dirigés avec graphicalVAR) ayant les intensités les plus élevées sont présents dans les deux estimations : V1-V5, V1-V3, V3-V4, V3-V2, V2-V4 et (seulement gimme « modulé ») V1-V4
- le lien contemporain à plus faible intensité présent dans le réseau graphicalVAR n'est pas présent par l'estimation gimme (V3-V5).

Comparaisons empiriques : modèle de groupe (1er exemple)

Comparaisons empiriques : modèle de groupe (2e exemple)

- le réseau mIVAR comprend plusieurs pistes décalées (V1-V5, V5-V4, V5-V3, V2-V4, V2-V3) d'intensité faible (la piste la plus élevée en valeur absolue est égale à -0.12) absentes dans gimme. Au niveau des modèles individuels, chacune de ces pistes est présente au maximum deux fois sur 25.
- mIVAR met en évidence 4 liens contemporains spécifiques: V1-V5, V5-V4, V1-V2 et V2-V3. Ces pistes sont présentes, respectivement, dans 13, 13, 9 et 7 réseaux individuels de gimme